Silencing SlELP2L, a tomato Elongator complex protein 2-like gene, inhibits leaf growth, accelerates leaf, sepal senescence, and produces dark-green fruit

نویسندگان

  • Mingku Zhu
  • Yali Li
  • Guoping Chen
  • Lijun Ren
  • Qiaoli Xie
  • Zhiping Zhao
  • Zongli Hu
چکیده

The multi-subunit complex Elongator interacts with elongating RNA polymerase II (RNAPII) and is thought to facilitate transcription through histone acetylation. Elongator is highly conserved in eukaryotes, yet has multiple kingdom-specific functions in diverse organisms. Recent genetic studies performed in Arabidopsis have demonstrated that Elongator functions in plant growth and development, and in response to biotic and abiotic stress. However, little is known about its roles in other plant species. Here, we study the function of an Elongator complex protein 2-like gene in tomato, here designated as SlELP2L, through RNAi-mediated gene silencing. Silencing SlELP2L in tomato inhibits leaf growth, accelerates leaf and sepal senescence, and produces dark-green fruit with reduced GA and IAA contents in leaves, and increased chlorophyll accumulation in pericarps. Gene expression analysis indicated that SlELP2L-silenced plants had reduced transcript levels of ethylene- and ripening-related genes during fruit ripening with slightly decreased carotenoid content in fruits, while the expression of DNA methyltransferase genes was up-regulated, indicating that SlELP2L may modulate DNA methylation in tomato. Besides, silencing SlELP2L increases ABA sensitivity in inhibiting seedling growth. These results suggest that SlELP2L plays important roles in regulating plant growth and development, as well as in response to ABA in tomato.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level.

Invertase plays multiple pivotal roles in plant development. Thus, its activity must be tightly regulated in vivo. Emerging evidence suggests that a group of small proteins that inhibit invertase activity in vitro appears to exist in a wide variety of plants. However, little is known regarding their roles in planta. Here, we examined the function of INVINH1, a putative invertase inhibitor, in t...

متن کامل

Overexpression of a novel MADS-box gene SlFYFL delays senescence, fruit ripening and abscission in tomato

MADS-domain proteins are important transcription factors involved in many biological processes of plants. In our study, a tomato MADS-box gene, SlFYFL, was isolated. SlFYFL is expressed in all tissues of tomato and significantly higher in mature leave, fruit of different stages, AZ (abscission zone) and sepal. Delayed leaf senescence and fruit ripening, increased storability and longer sepals w...

متن کامل

Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato.

Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide (i.e. magnesium- and phytol-free chlorophyll) occurs as a core intermediate. Most of the enzymes invo...

متن کامل

Different Mechanisms Are Responsible for Chlorophyll Dephytylation during Fruit Ripening and Leaf Senescence in Tomato1[W][OPEN]

Chlorophyll breakdown occurs in different green plant tissues (e.g. during leaf senescence and in ripening fruits). For different plant species, the PHEOPHORBIDE A OXYGENASE (PAO)/phyllobilin pathway has been described to be the major chlorophyll catabolic pathway. In this pathway, pheophorbide (i.e. magnesiumand phytol-free chlorophyll) occurs as a core intermediate. Most of the enzymes involv...

متن کامل

The RNAi-mediated silencing of xanthine dehydrogenase impairs growth and fertility and accelerates leaf senescence in transgenic Arabidopsis plants.

Xanthine dehydrogenase (XDH) is a ubiquitous enzyme involved in purine metabolism which catalyzes the oxidation of hypoxanthine and xanthine to uric acid. Although the essential role of XDH is well documented in the nitrogen-fixing nodules of leguminous plants, the physiological importance of this enzyme remains uncertain in non-leguminous species such as Arabidopsis. To evaluate the impact of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015